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In a phenomenology in which both energy and helicity exhibit net flux to the
small scales it is natural to investigate how they might influence each other.
Motivated by Kraichnan’s 1971 derivation of spectral scaling laws using the
timescale for energy transfer in wavenumber, we proceed by considering the
timescale for helicity transfer and its potential impact on energy distribution
in wavenumber. We demonstrate using resolved direct numerical simulations
that the predicted effects of a second timescale related to helicity transfer are
consistent with observed statistics. Both the energy and helicity spectra show
to close to a k−4/3 scaling in the higher wavenumber ’bottleneck’ regime of the
inertial range. The latter scaling is in agreement with our prediction for the
scaling exponent based on a helicity-dependent timescale for twisting rather
than shearing motions.

1 Introduction

There are two quadratic invariants of the inviscid Navier-Stokes equations
for 3D incompressible flows; the total energy, and the total helicity, H =
∫

u(x)·ω(x)dx, where u(x) is the velocity field at point x, and ω = ∇×u is the
vorticity. Unlike energy, helicity is a sign-indefinite pseudo-scalar, and is parity
breaking (or reflection-antisymmetric), that is, it changes sign if x → −x and
u → −u. A useful picture to keep in mind to visualize helicity is that of a
fluid parcel moving along a helix; the ‘handedness’ of this configuration is
immediately apparent. Fluid helicity appears in many phenomena at scales
ranging from atmospheric to viscous dissipation scales. In fact it is difficult to
conceive of a flow with identically zero helicity in all wavenumbers.

A statistical relation for velocity correlations related to helicity flux has
been sought in various publications beginning in 1961 [1] and such a rela-
tionship now exists for antisymmetric velocity correlations which describe the
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helicity flux (see references [2]):

〈(ul(x + r) − ul(x))(ut(x + r)×ut(x)〉 =
2

15
hr2 (1)

where ul is the component of velocity u along the separation vector r, ut =
u − ulr̂ is the transverse component of the velocity, h is the mean helicity
dissipation rate. This law is derived under the assumption of local statistical
isotropy and homogeneity. It is analogous to the Kolmogorov 1941 4/5-law
for the third-order longitudinal structure functions [3]. While the latter was
derived assuming reflection-symmetry of the flow, Eq. (1) requires reflection
symmetry breaking due to the presence of helicity. The 2/15-law was verified
for the first time in resolved numerical simulations in [4].

In a phenomenology in which both energy and helicity exhibit net flux to
the small scales (forward cascade) it is natural to investigate how they might
influence each other. Motivated by Kraichnan’s [5] derivation of spectral scal-
ing laws using the timescale for energy transfer in wavenumber, we proceed
to consider a timescale for helicity transfer and its potential impact on energy
distribution in wavenumber. It seems reasonable that the twisting character
of helical motions will give them a different characteristic timescale than, say,
energy transfer by shearing motions between two parcels of fluid. We follow
the arguments in [6] to construct a phenomenology with two timescales, τE

for pure energy transfer and the τH for pure helicity transfer rates. The lat-
ter timescale implies a k−4/3 scaling distribution of both energy and helicity.
In [4] we demonstrated using DNS that a second timescale might indeed be
important in the dynamics. In that work, resolved Navier-Stokes data were
acquired in a periodic box at resolutions of 5123 with controlled helicity input,
and 10243 with random helicity input. Both the energy and helicity spectra
show to close to a k−4/3 scaling in the higher end of the inertial range. The
latter scaling is consistent with our prediction for the scaling exponent based
on a helicity-dependent timescale for twisting rather than shearing motions.
We postulate self-consistent arguments for how such a phenomenology might
arrange to affect the energy spectrum as observed. The main results summa-
rized in this paper are discussed in detail in references [4, 7].

2 The phenomenology of helicity and related statistics

2.1 A transfer timescale of helicity and its effect on spectral

scaling

We recall from Ref. [5] the definition of the distortion time of an eddy of size
1/k where k is the wavenumber:

τ2

E ∼
(

∫ k

0

E(p)p2dp
)

−1

∼ [E(k)k3]−1 (2)
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This estimate was shown to lead to the well-known scaling of the energy
spectrum E(k) ∼ k−5/3. Ref. [6] showed that, assuming the helicity cascade
was governed by the energy timescale τE, the helicity spectrum is expected
to scale the same way, as H(k) ∼ k−4/3.

We can define an analogous timescale for distortions of an eddy due to
helicity transfer [7]:

τ2

H ∼
(

∫ k

0

|H(k)|k2

)

−1

(3)

The distortion or shear corresponding to τH is different from the distortion
corresponding to τE of Ref. [5]. If τH is allowed to govern the energy and
helicity timescales then we can estimate that E(k) ∼ H(k) ∼ k−4/3. The
ratio of the two timescales,

τE

τH
∼

( |H(k)|

2kE(k)

)

−1/2

.

In [7] we argue for the possibility that τH may be comparable (though slower)
than τE thus allowing for k−4/3 scaling of the spectra in the high wavenum-
bers. In the next section we present the numerical results which support our
proposed phenomenology.

3 Simulations and results

We will discuss two simulations in this section. The parameters of the simula-
tions are listed in Table 1. Data I at resolution of 5123 was forced with large
(maximum) helicity input of the same sign at every timestep which resulted in
a large mean helicity in statistically steady turbulence. Data II at resolution
of 10243 was forced with random (uncontrolled) helicity at each timestep re-
sulting in nearly zero mean helicity. Other details of the simulations, including
the numerical schemes are given the primary references.

Table 1. Parameters of the numerical simulations I and II. ν - viscosity; Rλ - Taylor
Reynolds number; mean total energy E = 1

2

∑

k
|ũ(k)|2; ε - mean energy dissipation

rate; mean total helicity H =
∑

k
ũ(k) · ω̃(−k); h - mean helicity dissipation rate;

ηε = (ν3/ε)1/4; ηh = (ν3/h)1/5.

N ν × 104 Rλ E ε H h ηε × 103 ηh × 104

I 512 1 270 1.72 1.51 26.8 62.2 9 1.7
II 1024 0.35 430 1.87 1.75 -0.12 13.2 4 1.3

In figure 1 we demonstrate using data I that both helicity and energy dis-
play constant fluxes (balanced by their respective dissipation rates) in about



4 Susan Kurien

Fig. 1. Fluxes of energy and helicity for data I. Dotted line: Flux of energy ΠE

normalized by mean dissipation rate of energy ε. Solid line: Flux of helicity ΠH

normalized by mean dissipation rate of helicity h.
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the same range of scales. This is a demonstration of the simultaneous transfer
of both energy and helicity to the small scales.

Figure 2 shows the spectra of energy and helicity for data I. In order to
clearly distinguish between the slightly different scalings of k−5/3 and k−4/3,
we plot on a linear-log scale and compensate the spectra by multiplying them
by both k5/3 (black lines) and k−4/3 (blue dotted lines). Both energy and
helicity spectra plotted in this way display no k−5/3 scaling as predicted by
the K41 theory. However, both spectra display agreement with k−4/3 scaling
in wavenumbers which are well-correlated with the constant flux regime in
Fig. 1.

4 Conclusion

The k−5/3 scaling law and the associated K41 phenemenology have underly-
ing assumptions of statistically isotropic and reflection symmetric, helicity-free
flows. Early efforts at integrating helicity into the picture, once it was discov-
ered that it too is a global invariant, have usually relied on the (reasonable)
guess that energy governs the overall dynamics with helicity being carried
along more or less passively. Until now, the only accepted effect of helicity has
been in slowing down the energy cascade in the following sense: if a flow is
started with initially high helicity, the time it takes for the energy to reach the
small scales is longer than if the flow were initialized with low or no helicity.
The slowing down of energy transfer is thought to be benign in that the final
statistical behavior of the flow, the spectral scalings and so forth, remain the
same whether or not the flow is helical.

The phenomenology we propose here goes a bit further. First, we propose
that it is not the net helicity but the relative (or local) helicity which is impor-
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Fig. 2. Solid black lines – spectra compensated by k5/3, dotted blue lines – same
spectra compensated by k4/3; horizontal lines indicate of the extent of scaling ranges.
(a)Energy spectrum for the 5123 simulation, which has a large mean helicity, there
appears to be no scaling as k−5/3, and very close to k−4/3 scaling in the range
6 < k < 25. (b)Helicity spectrum for the sam simulation.
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Fig. 3. Energy spectrum of data II represented in the same manner as figure 2a.
Note the low-wavenumber scaling of k−5/3 for a short range 8 < k < 20 followed by a
high wavenumber scaling of k−4/3 for the range 20 < k < 70. The two scaling ranges
occur over comparable number of lengthscales and the latter scaling corresponds
closely to the so-called ’bottleneck’ feature.
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tant in the dynamics. Second, the effect of relative helicity is locked into the
dynamics in such a way as to cause energy to pile-up in the high-wavenumbers
because of the slower timescale for helicity transfer. This results in the shal-
lower k−4/3 spectral scaling . The latter effect may also arise not from a
cascade process, but because of generation of local helicity in the small scales
by the local viscous production-dissipation of helicity. This issue can prob-
ably be verified with higher Reynolds numbers (lower viscosity) simulations
to determine if this is a finite Reynolds number effect. The main conclusion
of this work is that the bottleneck of energy in the high wavenumbers may
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be shown to be consistent with a phenomenology in which the presence of
helicity slows down the energy cascade enough to cause a pile-up and hence
a shallower spectral scaling.
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